

Assessments of Trends
in
dition Monitoring Systems

Condition Monitoring Systems and

Life Cycle Cost Management for

Combined Cycle Power Plants

Turbine Power Systems

Conference

And

Condition Monitoring

Workshop





### Present New Advanced Gas Turbine

High Thermal Efficiency—40% - 45%

Lower Availability (up to 10% Lower)

Lower Life of Nozzles and Blades (averaging 15000 hrs)

Higher Degradation Rate (5% - 7% in first 10,000 hours of operation)

Instability of Low NO<sub>x</sub> Combustors





# OPERATION OF COMBINED CYCLE POWER PLANTS

- >NO LONGER BASE LOAD OPERATION
- > DAILY CYCLING OF POWER LOAD
- >PLANTS SHUT DOWN OVER WEEKENDS





The **Availability** of a power plant is defined as

$$A = \frac{P - S - F}{P}$$

where:

P = Period of time, hours, usually this is assumed as one year, which amounts to 8760 Hrs.

S = Scheduled outage hours for planned maintenance

F = Forced outage hours or unplanned outage due to repair.

The Reliability of a power plant is defined as

$$R = \frac{P - F}{P}$$





# IMPROVEMENT OF RELIABILITY AVAILABILITY AND MAINTAINABILITY

#### TOTAL CONDITION MONITORING

- PERFORMANCE BASED MAINTENANCE
- OVERHAUL BASED ON MONITORING
- SPECIAL LOW NO<sub>x</sub> COMBUSTION MONITORING
- PYROMETER, OR OTHER TYPE OF DIRECT MEASUREMENT SENSORS FOR BLADE METAL TEMPERATURES TO IMPROVE BLADE LIFING

The Boyce Consultancy



### **RAM**

### IMPROVEMENT IN RAM HAS MANY BENEFITS TO THE U.S. OVERALL ENERGY PROGRAM

- If the availability in California was up by 2% there would have been very few if any brownouts. This is due to an increase in available Power by more than 300 MW.
- ➤ Reduction of CO<sub>2</sub>, would occur as a direct function of fuel savings. A 2% in fuel savings would reduce the amount of CO<sub>2</sub> being emitted by the same percent.
- > Reduction of other Pollutants





### **RAM**

### IMPROVEMENT IN RAM HAS MANY BENEFITS TO THE U.S. OVERALL ENERGY PROGRAM

- Fuel savings (operating the turbine as close to its design efficiency). A 1% reduction in degradation could amount to a savings of 400 million gallons of oil per year, based on a power consumption of 70.1x10<sup>4</sup> GWh.
- The 2.7 c/kWh amounts to a 20 % reduction in costs. This takes into account fuels savings, and operation and maintenance savings. Fuel cost is based on \$7.0 MBTU



### RAM

### IMPROVEMENT IN RAM HAS MANY BENEFITS TO THE U.S. OVERALL ENERGY PROGRAM

Total Emissions of a typical unit by Weight

UHC = 0.05%

CO = 0.1%

 $NO_{x} = 0.35\%$ 

 $CO_2 = 99.5\%$  (3.14x Fuel Flow)





- ➤ Obtain accurate information from plants to determine the major problems of the new Gas Turbine Combined Cycle Power Plants.
  - Type of Failures
  - Heat Rate Degradation
  - Power Degradation
  - Correlation with Fuel Types
- ➤ Obtain accurate information of Condition Monitoring Systems available at present
  - Type of Data Gathering System
  - Instrumentation Used and Needed
  - Analysis Ability
  - Prognostic Ability





### **GOALS OF CONDITION MONITORING**

- Ensuring High Machine Availability and Reliability
- Maintaining peak efficiency and limiting performance degradation of machine trains
- Extending time between inspections and overhauls
- Optimizing the cycle configuration
- Estimating Availability
- Evaluating scenarios by means of "What If" Analysis
- Estimating maintenance requirements and life of hot section components
- Fault identification by Expert System analysis.





## MAJOR COMPONENTS OF A CONDITION MONITORING SYSTEM

- AEROTHERMAL ANALYSIS
- COMBUSTION ANALYSIS
- VIBRATION ANALYSIS
- MECHANICAL ANALYSIS
- DIAGNOSIS
- TRENDING AND PROGNOSIS
- WHAT IF





### **CONDITION MONITORING**

- Present systems serve mostly a monitoring function.
- Monitoring of combustion systems for Low NO<sub>x</sub> Combustors a very important need which needs to be addressed
- Lifing Algorithms a very important need that remains unfulfilled.





### Survey of Users

- Gas Turbine Users Conference Banff Canada
- IGTI Expo and Conference New Orleans
- Independent Power Plants
- Various Petrochemical Plants





### Users

- Most Users want a Condition Monitoring System
- Limited Condition Monitoring Systems in Use
- On- Line Compressor wash widely used
- Shaft Vibration Systems in Most Plants
- Exhaust Gas Temperature Analysis Widely Used





### Major User Concerns

- Reduction in Availability and Reliability
- Repair of Single Crystal Blades
- Low NO<sub>x</sub> Combustors
- Surge in Compressors
- Bearings and Seal Problems



### Survey of Manufacturers

- Gas Turbine OEM's
- Condition Monitoring Equipment
- Repair Facilities





### Manufacturers

- Change in Philosophy due to Operation and Maintenance Contracts
- Limited Condition Monitoring Equipment Supplied with Equipment
- New Instruments
- New Techniques





### Survey of Research Agencies

- EPRI
- NASA
- DOD
- KEMA-The Netherlands
- DERA-The UK





### Research Agencies

- New Techniques in Monitoring
  - Statistical Analysis
  - Neural Networks
- New Instrumentation
  - Pyrometers-Metal Blade Temperatures
  - Dynamic Pressure Transducers
  - Surface
- Diagnostics
- Life Cycle Analysis





### **GOALS**

## NEXT GENERATION TURBINE PROGRAM IMPROVEMENT OF RELIABILITY, AVAILABILITY AND MAINTAINABILITY

15 % OR HIGHER REDUCTION ON O&M COSTS

LIMIT DEGRADATION TO 2%/ yr

FLEXIBILITY OF 400 STARTS PER YEAR

MULTIPLE FUEL FLEXIBILITY





### 15 % OR HIGHER REDUCTION OF

### **O&M COSTS**

- ON-LINE CONDITION MONITORING
- LIMIT DEGRADATION to 2%/YR
- OPERATE AT HIGH EFFICIENCY CONDITIONS AT OFF-DESIGN OPERATION
- IMPROVE COMPONENT LIFE (25,000 hrs)
- INCREASE TIME BETWEEN MAJOR OVERHAULS (8,000-12,000 hrs)





## FLEXIBILITY OF 400 STARTS PER YEAR

- ESTIMATION OF STRESS AND EQUIVALENT OPERATING HOURS
- STEAM TURBINES LIMITING PARAMETER IN COMBINED CYCLE POWER PLANTS





### MULTIPLE FUEL FLEXIBILITY

### NATURAL GAS AS BASE LINE

- Price of Natural Gas North of \$7.0/MBTU's
- Alternative Fuel Strategy
- Low BTU Gases
  - Coal Gasification
  - Land Fill
- FUEL TREATMENT
- FUEL TRACING AND SPECIAL DESIGN FOR HEAVY FUELS
- ON-LINE TURBINE WASH



- ➤ Obtain information regarding new instrumentations that have been developed by various government agencies:
  - Department of Energy
  - NASA
  - Department of Defense
- ➤ Obtain information regarding new analytical techniques available:
  - New Techniques Of Data Validation
  - Training Patterns
  - Neural Networks
  - Fuzzy Logic





## Condition Monitoring Workshop

- Performance
- Diagnostics
- Combustion Stability, Emissions, and Related Controls Issues
- Instrumentation Instrumentation
- Data Validation
- Hot Section Lifing: Optimal Maintenance Interval Timing



#### CONDITION MONITORING SYSTEMS

- Mechanical and Performance Based
- Data Validation
- Aero-Thermal Performance Based Models
- Stress Dynamics with Loading & Temperature
- Rotor Dynamics
- Combustion Stability Analysis
- Trending and Prognostics
- Diagnostics and Expert Systems
- Lifing Prediction
- Optimization Studies





#### TECHNICAL ISSUES

- Data Validation
- Development of New Instrumentation
- Development of Lifing Algorithms for Various Hot Section Components
- Development of Diagnostic Matrix
- Development of Optimization Programs for Combined Cycle Plants
- Development of Maintenace Programs based on Condition Monitoring





#### DATA VALIDATION

- NEW TECHNIQUES OF DATA VALIDATION
- TRAINING PATTERNS
- NEURAL NETWORKS
- FUZZY LOGIC



### Development of New Instrumentation

- Blade Metal Temperature Sensors
- On line Monitoring of Ferrous and Non-Ferrous Particles in the Lubrication System
- On-line Monitoring of Exhaust Gases for Metal Particles
- Long Term Dynamic Pressure Transducers for Combustion Monitoring
- Monitoring Low NO<sub>x</sub> Combustors





### Parameters Effecting Hot Section Life

- Type of fuel.
- Type of Service
- Firing Temperature
- Materials stress and strain properties
- Coatings
- Effectiveness of cooling systems
- Number of starts.
- Number of Full Load Trips.





### Development of Lifing Algorithms for Various Hot Section Components

- Algorithms for Single Crystal and Directionally Solidified Blades
- Algorithms for Combustion Liners
- Algorithms for Various Diagnostics





### Development of Diagnostic Matrix

- Diagnostic For Various Turbomachines
- Design of an Expert System
- Prognostics
- Diagnostics for Rest of Plant Equipment
- Development of Fuzzy Logic Systems with Algorithms





### Development of Optimization Programs for Combined Cycle Plants

- Updating of all Efficiency Curves Based on Data obtained from Condition Monitoring Analysis
- Part Load Optimization of Various Plant Equipment
- Maximizing Efficiency at Off Load Conditions





### Development of Maintenance Programs based on Condition Monitoring

- Performance Based Condition Monitoring Maintenance
- Component Lifing Studies
- Major Inspection Intervals based on Total Condition Monitoring





### PHASE III

## Commercialization Plan A Program Bringing Users, OEM, and Instrumentaion Companies Together

- Commercialize new instrumentation for application in gas turbines and the rest of the combined cycle power plant.
- Commercialize techniques of Data Validation,
  Analytical Techniques, and Diagnostic Techniques